
McVerSi: A Test Generation Framework for
Fast Memory Consistency Verification in

Simulation

Marco Elver Vijay Nagarajan

University of Edinburgh

HPCA, March 2016

1 www.inf.ed.ac.uk



Overview

Problem

• How to rigorously verify hardware implementation (full system functional
design) satisfies memory consistency model in simulation?

• Simulation-based verification slow: takes long to achieve high coverage
→ low assurance.

McVerSi: Evolutionary Test Generation Approach (GP)

• Carefully recombines tests, favoring racy operations.

• Coverage directed.

Results

• Bugs found faster and more consistent than random test generation and
litmus tests.

• Found all tested bugs in less than 1 day, unlike alternatives.

• Found 2 new bugs in Gem5.

2 www.inf.ed.ac.uk



Motivation

Memory consistency verification still a problem

• Real silicon still ships with consistency bugs1 2.

• Major challenges:
1 In testing based approaches: how to cover all relevant aspects of

implementation?
2 In formal verification: does translated abstraction represent real

implementation sufficiently?
3 Which components (regardless of method): can miss bugs due to

interaction if not modelled correctly!

• Want rigorous verification of functional design implementation, e.g.
cycle accurate model of full system.

1Alglave et al., “Herding cats”, In: TOPLAS, 2014.
2Alglave et al., “GPU concurrency: Weak behaviours and programming assumptions”, In: ASPLOS,

2015.
3 www.inf.ed.ac.uk



Memory Consistency Models

Consistency: contract between programmer and hardware

⇒ Specifies how memory system should behave: conveys ordering
guarantees (or lack of) among memory ops.

Some Common MCMs

• SC: all program orders maintained.

• TSO: relaxes write→ read order.

init: x = 0, y = 0
Thread 1 Thread 2
x← 1 r1← y
y← 1 r2← x
Allow?: r1 = 1 ∧ r2 = 0

4 www.inf.ed.ac.uk



Memory Consistency Models

Consistency: contract between programmer and hardware

⇒ Specifies how memory system should behave: conveys ordering
guarantees (or lack of) among memory ops.

Some Common MCMs

• SC: all program orders maintained.

• TSO: relaxes write→ read order.

init: x = 0, y = 0
Thread 1 Thread 2
x← 1 y← 1
r1← y r2← x
Allow?: r1 = 0 ∧ r2 = 0

4 www.inf.ed.ac.uk



What components can affect the MCM?

• Core pipeline (in-order,
OoO).

• MMU+TLB.

• Caches + coherence
protocol (eager, lazy).

• Interconnect.

• ...

P0

Core
Pn

Core

SB

LB

SB

LBMMU+TLB MMU+TLB

L2 cache (shared)

L1 cache
(private)

L1 cache
(private)

On-chip interconnect

Main Memory

5 www.inf.ed.ac.uk



What components can affect the MCM?

• Core pipeline (in-order,
OoO).

• MMU+TLB.

• Caches + coherence
protocol (eager, lazy).

• Interconnect.

• ...

P0

Core
Pn

CoreSB

LB

SB

LB

MMU+TLB MMU+TLB

L2 cache (shared)

L1 cache
(private)

L1 cache
(private)

On-chip interconnect

Main Memory

5 www.inf.ed.ac.uk



What components can affect the MCM?

• Core pipeline (in-order,
OoO).

• MMU+TLB.

• Caches + coherence
protocol (eager, lazy).

• Interconnect.

• ...

P0

Core
Pn

CoreSB

LB

SB

LBMMU+TLB MMU+TLB

L2 cache (shared)

L1 cache
(private)

L1 cache
(private)

On-chip interconnect

Main Memory

5 www.inf.ed.ac.uk



What components can affect the MCM?

• Core pipeline (in-order,
OoO).

• MMU+TLB.

• Caches + coherence
protocol (eager, lazy).

• Interconnect.

• ...

P0

Core
Pn

CoreSB

LB

SB

LBMMU+TLB MMU+TLB

L2 cache (shared)

L1 cache
(private)

L1 cache
(private)

On-chip interconnect

Main Memory

5 www.inf.ed.ac.uk



What components can affect the MCM?

• Core pipeline (in-order,
OoO).

• MMU+TLB.

• Caches + coherence
protocol (eager, lazy).

• Interconnect.

• ...

P0

Core
Pn

CoreSB

LB

SB

LBMMU+TLB MMU+TLB

L2 cache (shared)

L1 cache
(private)

L1 cache
(private)

On-chip interconnect

Main Memory

5 www.inf.ed.ac.uk



What components can affect the MCM?

• Core pipeline (in-order,
OoO).

• MMU+TLB.

• Caches + coherence
protocol (eager, lazy).

• Interconnect.

• ...

P0

Core
Pn

CoreSB

LB

SB

LBMMU+TLB MMU+TLB

L2 cache (shared)

L1 cache
(private)

L1 cache
(private)

On-chip interconnect

Main Memory

5 www.inf.ed.ac.uk



What components can affect the MCM?

• Core pipeline (in-order,
OoO).

• MMU+TLB.

• Caches + coherence
protocol (eager, lazy).

• Interconnect.

• ...

P0

Core
Pn

CoreSB

LB

SB

LBMMU+TLB MMU+TLB

L2 cache (shared)

L1 cache
(private)

L1 cache
(private)

On-chip interconnect

Main Memory

Composition+interaction of components must still satisfy MCM!

5 www.inf.ed.ac.uk



How to verify?

Formal verification

• Provides proof; e.g. model checking (exhaustive search) [Dill, 1996].

• Works for high-level abstractions, individual components.

• Impractical for detailed (e.g. cycle accurate) full system design.

Post-silicon verification

• Random testing (e.g. TSOtool [Hangal et al., 2004]), etc.

• Fastest→ good coverage (high assurance).

• Expensive; hard to debug.

6 www.inf.ed.ac.uk



How to verify?

Formal verification

• Provides proof; e.g. model checking (exhaustive search) [Dill, 1996].

• Works for high-level abstractions, individual components.

• Impractical for detailed (e.g. cycle accurate) full system design.

Simulation-based verification of full system

• Litmus tests, pseudo-random tests [Saha et al., 1995].

• Cheap; easy to debug.

• Extremely slow→ poor coverage (low assurance).

Post-silicon verification

• Random testing (e.g. TSOtool [Hangal et al., 2004]), etc.

• Fastest→ good coverage (high assurance).

• Expensive; hard to debug.

6 www.inf.ed.ac.uk



How to verify in simulation?

Litmus tests Full System Simulation Coverage Report

Write new tests

MCM Checker

Random Test
Generator

Full System Simulation Coverage Report

Modify parameters

7 www.inf.ed.ac.uk



How to automate?

????? Full System Simulation Coverage Report

MCM Checker

8 www.inf.ed.ac.uk



Problem Statement

How to generate efficient MCM tests for simulation, s.t. wall-clock time to
explore rare corner cases is reduced?

1 What are good MCM tests?

2 How to feed back coverage into test generator?

9 www.inf.ed.ac.uk



McVerSi Approach

McVerSi Full System Simulation Coverage Report

MCM Checker

GP based evolution

MCM Checker

T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a
T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a
T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a
T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a

Population

Fitness

How racy?

Custom crossover
and mutation

Reproduction
+ replacementSelection

How racy?

10 www.inf.ed.ac.uk



McVerSi Approach

McVerSi Full System Simulation Coverage Report

MCM Checker

GP based evolution

MCM Checker

T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a
T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a
T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a
T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a

Population

Fitness

How racy?

Custom crossover
and mutation

Reproduction
+ replacementSelection

How racy?

10 www.inf.ed.ac.uk



McVerSi Approach

McVerSi Full System Simulation Coverage Report

MCM Checker

GP based evolution

MCM Checker

T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a
T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a
T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a
T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a

Population

Fitness

How racy?

Custom crossover
and mutation

Reproduction
+ replacementSelection

How racy?

10 www.inf.ed.ac.uk



McVerSi Approach

McVerSi Full System Simulation Coverage Report

MCM Checker

GP based evolution

MCM Checker

T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a
T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a
T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a
T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a

Population

Fitness

How racy?

Custom crossover
and mutation

Reproduction
+ replacementSelection

How racy?

10 www.inf.ed.ac.uk



McVerSi Approach

McVerSi Full System Simulation Coverage Report

MCM Checker

GP based evolution

MCM Checker

T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a
T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a
T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a
T2 =b

T1 a= T1 c=

T1 c=

T2 b=

T2 c= T1 a=

T2 =a T1 b=

T1 b=

T2 =c

T2 =a

Population

Fitness

How racy?

Custom crossover
and mutation

Reproduction
+ replacementSelection

How racy?

10 www.inf.ed.ac.uk



Measuring Fitness/Coverage

• Simulation runs continuously, with new tests loaded on-the-fly.

• Test fitness: result of coverage of individual test-run.

• Evaluated with coherence protocol transition coverage.

P0

Core
Pn

CoreSB

LB

SB

LBMMU+TLB MMU+TLB

On-chip interconnect

Main Memory

L2 cache (shared)

L1 cache
(private)

L1 cache
(private)

11 www.inf.ed.ac.uk



Measuring Fitness/Coverage

• Simulation runs continuously, with new tests loaded on-the-fly.

• Test fitness: result of coverage of individual test-run.

• Evaluated with coherence protocol transition coverage.

One of many possible options—highly dependent on design!

11 www.inf.ed.ac.uk



Test Suitability: What is a good MCM test?

init: x = 0, y = 0
Thread 1 Thread 2
x← 1 r1← y
y← 1 r2← x
r1 = {0, 1} ∧ r2 = {0, 1}

Average non-determinism of test (NDT)

Average number of races observed per memory operation (NDe) across all
iterations of a test-run→ higher implies better test.

12 www.inf.ed.ac.uk



Test Suitability: What is a good MCM test?

init: x = 0, y = 0, z = 0
Thread 1 Thread 2
z← 1 r1← y
y← 1 r2← x
r1 = {0, 1} ∧ r2 = {0}

Average non-determinism of test (NDT)

Average number of races observed per memory operation (NDe) across all
iterations of a test-run→ higher implies better test.

12 www.inf.ed.ac.uk



Selective Crossover

Crossover

• Crossover operator crucial in GP to create new program(s) from 2
parents with good fitness: offspring likely to outperform (in fitness).

Goal: Encode Domain Knowledge

• Use knowledge of what makes good MCM test.

Crossover Algorithm

1 Obtain fitaddrs: addresses of operations where NDe is larger than
rounded NDT of test.

2 Select all operations with address in fitaddrs (discard others).

3 Overlay both parent tests, resulting in new test.

13 www.inf.ed.ac.uk



Evaluation Methodology

System setup

• Gem5 full-system simulator; x86-64 (TSO).

• Ruby memory simulator with Garnet interconnect model.

• 8 out-of-order cores.

• Private L1s; NUCA organization for L2.

Coherence Protocols

• MESI: Standard Ruby implementation.

• TSO-CC: Lazy coherence protocol for TSO [Elver et al., 2014].

14 www.inf.ed.ac.uk



Test Generators

McVerSi
• Test size: 1000 operations across all threads.

• Iterations: 10 test executions per test-run.

• GP params: population size 100; tournament selection (size 2);
mutation probability 0.005; crossover probability 1.0.

Random
• Test size: 1000 ops

• Iterations: 10

Litmus tests (diy-litmus)

• Diy [Alglave et al., 2012] generated litmus tests for TSO (38 tests).

15 www.inf.ed.ac.uk



Results

Bugs found within 1 day 5 days 10 days

McVerSi (large mem.) 100% N/A N/A
Random (small mem.) 73% 73% 73%
Random (large mem.) 55% 73% 82%
diy-litmus 18% 45% 45%

Bugs found, when running up to the equivalent of 10 days time.

16 www.inf.ed.ac.uk



Results

Bug McVerSi
(small mem.)

McVerSi
(large mem.)

Random
(small mem.)

Random
(large mem.)

diy-litmus

MESI,LQ+IS,Inv1 10 (0.01) 10 (0.49) 10 (0.01) 10 (0.89) NF
MESI,LQ+SM,Inv1 10 (0.33) 10 (5.20) 10 (0.48) NF NF
MESI,LQ+E,Inv 10 (2.97) 10 (0.09) 10 (4.34) 10 (0.10) NF
MESI,LQ+M,Inv 10 (1.42) 10 (1.37) 10 (1.93) 10 (11.05) NF
MESI,LQ+S,Replace NF 10 (2.69) NF 6 (10.10) NF
MESI+PUTX-Race2 NF 10 (4.64) NF 3 (9.63) NF
MESI+Replace-Race NF 10 (0.12) NF 10 (0.19) 5 (0.53)
TSO-CC+no-epoch-ids 10 (0.90) 10 (7.40) 10 (0.96) NF 6 (5.93)
TSO-CC+compare 10 (0.01) 10 (2.28) 10 (0.01) 1 (22.31) 10 (0.92)
LQ+no-TSO3 10 (0.00) 10 (0.03) 10 (0.00) 10 (0.08) 10 (5.35)
SQ+no-FIFO 10 (0.01) 10 (0.24) 10 (0.01) 10 (0.40) 9 (4.77)
All 80 (0.71) 110 (2.23) 80 (0.97) 70 (3.41) 40 (3.60)

Bug coverage: bug found count out of 10 samples (arith. mean hours).

1Found with McVerSi (patches submitted).
2Komuravelli et al., “Revisiting the Complexity of Hardware Cache Coherence and Some Implications”,

In: TACO, 2014.
3Found in 2013 via litmus testing, patch sent in March 2014; also independently discovered by [Lustig

et al., 2014].
17 www.inf.ed.ac.uk



Results

Bug McVerSi
(small mem.)

McVerSi
(large mem.)

Random
(small mem.)

Random
(large mem.)

diy-litmus

MESI,LQ+IS,Inv1 10 (0.01) 10 (0.49) 10 (0.01) 10 (0.89) NF
MESI,LQ+SM,Inv1 10 (0.33) 10 (5.20) 10 (0.48) NF NF
MESI,LQ+E,Inv 10 (2.97) 10 (0.09) 10 (4.34) 10 (0.10) NF
MESI,LQ+M,Inv 10 (1.42) 10 (1.37) 10 (1.93) 10 (11.05) NF
MESI,LQ+S,Replace NF 10 (2.69) NF 6 (10.10) NF
MESI+PUTX-Race2 NF 10 (4.64) NF 3 (9.63) NF
MESI+Replace-Race NF 10 (0.12) NF 10 (0.19) 5 (0.53)
TSO-CC+no-epoch-ids 10 (0.90) 10 (7.40) 10 (0.96) NF 6 (5.93)
TSO-CC+compare 10 (0.01) 10 (2.28) 10 (0.01) 1 (22.31) 10 (0.92)
LQ+no-TSO3 10 (0.00) 10 (0.03) 10 (0.00) 10 (0.08) 10 (5.35)
SQ+no-FIFO 10 (0.01) 10 (0.24) 10 (0.01) 10 (0.40) 9 (4.77)
All 80 (0.71) 110 (2.23) 80 (0.97) 70 (3.41) 40 (3.60)

Bug coverage: bug found count out of 10 samples (arith. mean hours).

1Found with McVerSi (patches submitted).
2Komuravelli et al., “Revisiting the Complexity of Hardware Cache Coherence and Some Implications”,

In: TACO, 2014.
3Found in 2013 via litmus testing, patch sent in March 2014; also independently discovered by [Lustig

et al., 2014].
17 www.inf.ed.ac.uk



Results

Bug McVerSi
(small mem.)

McVerSi
(large mem.)

Random
(small mem.)

Random
(large mem.)

diy-litmus

MESI,LQ+IS,Inv1 10 (0.01) 10 (0.49) 10 (0.01) 10 (0.89) NF
MESI,LQ+SM,Inv1 10 (0.33) 10 (5.20) 10 (0.48) NF NF
MESI,LQ+E,Inv 10 (2.97) 10 (0.09) 10 (4.34) 10 (0.10) NF
MESI,LQ+M,Inv 10 (1.42) 10 (1.37) 10 (1.93) 10 (11.05) NF
MESI,LQ+S,Replace NF 10 (2.69) NF 6 (10.10) NF
MESI+PUTX-Race2 NF 10 (4.64) NF 3 (9.63) NF
MESI+Replace-Race NF 10 (0.12) NF 10 (0.19) 5 (0.53)
TSO-CC+no-epoch-ids 10 (0.90) 10 (7.40) 10 (0.96) NF 6 (5.93)
TSO-CC+compare 10 (0.01) 10 (2.28) 10 (0.01) 1 (22.31) 10 (0.92)
LQ+no-TSO3 10 (0.00) 10 (0.03) 10 (0.00) 10 (0.08) 10 (5.35)
SQ+no-FIFO 10 (0.01) 10 (0.24) 10 (0.01) 10 (0.40) 9 (4.77)
All 80 (0.71) 110 (2.23) 80 (0.97) 70 (3.41) 40 (3.60)

Bug coverage: bug found count out of 10 samples (arith. mean hours).

1Found with McVerSi (patches submitted).
2Komuravelli et al., “Revisiting the Complexity of Hardware Cache Coherence and Some Implications”,

In: TACO, 2014.
3Found in 2013 via litmus testing, patch sent in March 2014; also independently discovered by [Lustig

et al., 2014].
17 www.inf.ed.ac.uk



Results

Bug McVerSi
(small mem.)

McVerSi
(large mem.)

Random
(small mem.)

Random
(large mem.)

diy-litmus

MESI,LQ+IS,Inv1 10 (0.01) 10 (0.49) 10 (0.01) 10 (0.89) NF
MESI,LQ+SM,Inv1 10 (0.33) 10 (5.20) 10 (0.48) NF NF
MESI,LQ+E,Inv 10 (2.97) 10 (0.09) 10 (4.34) 10 (0.10) NF
MESI,LQ+M,Inv 10 (1.42) 10 (1.37) 10 (1.93) 10 (11.05) NF
MESI,LQ+S,Replace NF 10 (2.69) NF 6 (10.10) NF
MESI+PUTX-Race2 NF 10 (4.64) NF 3 (9.63) NF
MESI+Replace-Race NF 10 (0.12) NF 10 (0.19) 5 (0.53)
TSO-CC+no-epoch-ids 10 (0.90) 10 (7.40) 10 (0.96) NF 6 (5.93)
TSO-CC+compare 10 (0.01) 10 (2.28) 10 (0.01) 1 (22.31) 10 (0.92)
LQ+no-TSO3 10 (0.00) 10 (0.03) 10 (0.00) 10 (0.08) 10 (5.35)
SQ+no-FIFO 10 (0.01) 10 (0.24) 10 (0.01) 10 (0.40) 9 (4.77)
All 80 (0.71) 110 (2.23) 80 (0.97) 70 (3.41) 40 (3.60)

Bug coverage: bug found count out of 10 samples (arith. mean hours).

1Found with McVerSi (patches submitted).
2Komuravelli et al., “Revisiting the Complexity of Hardware Cache Coherence and Some Implications”,

In: TACO, 2014.
3Found in 2013 via litmus testing, patch sent in March 2014; also independently discovered by [Lustig

et al., 2014].
17 www.inf.ed.ac.uk



Conclusion

Problem

• How to rigorously verify memory consistency model in full system
functional design in simulation?

McVerSi: Evolutionary Approach (GP)

• Fitness: coverage (primary objective).

• Crossover: favoring operations from tests that contribute highly to
non-determinism/races (more likely to expose MCM bugs).

• Special guest-host interface to improve throughput (speed up
convergence).

• Found 2 new bugs in Gem5 (patches sent upstream).

• Standalone library available: https://github.com/melver/mc2lib

18 www.inf.ed.ac.uk

https://github.com/melver/mc2lib


Crossover Example

T2 =b

T1 a= T1 =c

T1 =c

T2 =b

T2 =c T1 a=

T2 =a T1 =b

T1 b=

T2 c=

T2 =a

=ca=

=b=c

b= =a

T1 T2

Parent-1

{a,b}
fitaddrs

=a=c

=ba=

=b c=

T1 T2

Parent-2

{a,c}
fitaddrs

crossover_mutate

T2 =b T1 =c T1 a= T1 b= T2 =aT2 c=

T2 c=T1 b=T2 =aT1 =cT1 a= T1 a=

c=a=

=b=c

b= =a

T1 T2

Child-1

c==c

=aa=

a=

b=

T1 T2

Child-2

19 www.inf.ed.ac.uk



Crossover Example

T2 =b

T1 a= T1 =c

T1 =c

T2 =b

T2 =c T1 a=

T2 =a T1 =b

T1 b=

T2 c=

T2 =a

=ca=

=b=c

b= =a

T1 T2

Parent-1

{a,b}
fitaddrs

=a=c

=ba=

=b c=

T1 T2

Parent-2

{a,c}
fitaddrs

crossover_mutate

T2 =b T1 =c T1 a= T1 b= T2 =aT2 c=

T2 c=T1 b=T2 =aT1 =cT1 a= T1 a=

c=a=

=b=c

b= =a

T1 T2

Child-1

c==c

=aa=

a=

b=

T1 T2

Child-2

19 www.inf.ed.ac.uk



Crossover Example

T2 =b

T1 a= T1 =c

T1 =c

T2 =b

T2 =c T1 a=

T2 =a T1 =b

T1 b=

T2 c=

T2 =a

=ca=

=b=c

b= =a

T1 T2

Parent-1

{a,b}
fitaddrs

=a=c

=ba=

=b c=

T1 T2

Parent-2

{a,c}
fitaddrs

crossover_mutate

T2 =b T1 =c T1 a= T1 b= T2 =aT2 c=

T2 c=T1 b=T2 =aT1 =cT1 a= T1 a=

c=a=

=b=c

b= =a

T1 T2

Child-1

c==c

=aa=

a=

b=

T1 T2

Child-2

19 www.inf.ed.ac.uk



Crossover Example

T2 =b

T1 a= T1 =c

T1 =c

T2 =b

T2 =c T1 a=

T2 =a T1 =b

T1 b=

T2 c=

T2 =a

=ca=

=b=c

b= =a

T1 T2

Parent-1

{a,b}
fitaddrs

=a=c

=ba=

=b c=

T1 T2

Parent-2

{a,c}
fitaddrs

crossover_mutate

T2 =b T1 =c T1 a= T1 b= T2 =aT2 c=

T2 c=T1 b=T2 =aT1 =cT1 a= T1 a=

c=a=

=b=c

b= =a

T1 T2

Child-1

c==c

=aa=

a=

b=

T1 T2

Child-2

19 www.inf.ed.ac.uk



Crossover Example

T2 =b

T1 a= T1 =c

T1 =c

T2 =b

T2 =c T1 a=

T2 =a T1 =b

T1 b=

T2 c=

T2 =a

=ca=

=b=c

b= =a

T1 T2

Parent-1

{a,b}
fitaddrs

=a=c

=ba=

=b c=

T1 T2

Parent-2

{a,c}
fitaddrs

crossover_mutate

T2 =b T1 =c T1 a= T1 b= T2 =a

T2 c=

T2 c=T1 b=T2 =aT1 =cT1 a= T1 a=

c=a=

=b=c

b= =a

T1 T2

Child-1

c==c

=aa=

a=

b=

T1 T2

Child-2

19 www.inf.ed.ac.uk



Crossover Example

T2 =b

T1 a= T1 =c

T1 =c

T2 =b

T2 =c T1 a=

T2 =a T1 =b

T1 b=

T2 c=

T2 =a

=ca=

=b=c

b= =a

T1 T2

Parent-1

{a,b}
fitaddrs

=a=c

=ba=

=b c=

T1 T2

Parent-2

{a,c}
fitaddrs

crossover_mutate

T2 =b T1 =c T1 a= T1 b= T2 =aT2 c=

T2 c=T1 b=T2 =aT1 =cT1 a= T1 a=

c=a=

=b=c

b= =a

T1 T2

Child-1

c==c

=aa=

a=

b=

T1 T2

Child-2

19 www.inf.ed.ac.uk



Crossover Example

T2 =b

T1 a= T1 =c

T1 =c

T2 =b

T2 =c T1 a=

T2 =a T1 =b

T1 b=

T2 c=

T2 =a

=ca=

=b=c

b= =a

T1 T2

Parent-1

{a,b}
fitaddrs

=a=c

=ba=

=b c=

T1 T2

Parent-2

{a,c}
fitaddrs

crossover_mutate

T2 =b T1 =c T1 a= T1 b= T2 =aT2 c=

T2 c=T1 b=T2 =aT1 =cT1 a=

T1 a=

c=a=

=b=c

b= =a

T1 T2

Child-1

c==c

=aa=

a=

b=

T1 T2

Child-2

19 www.inf.ed.ac.uk



Crossover Example

T2 =b

T1 a= T1 =c

T1 =c

T2 =b

T2 =c T1 a=

T2 =a T1 =b

T1 b=

T2 c=

T2 =a

=ca=

=b=c

b= =a

T1 T2

Parent-1

{a,b}
fitaddrs

=a=c

=ba=

=b c=

T1 T2

Parent-2

{a,c}
fitaddrs

crossover_mutate

T2 =b T1 =c T1 a= T1 b= T2 =aT2 c=

T2 c=T1 b=T2 =aT1 =cT1 a= T1 a=

c=a=

=b=c

b= =a

T1 T2

Child-1

c==c

=aa=

a=

b=

T1 T2

Child-2

19 www.inf.ed.ac.uk



Crossover Example

T2 =b

T1 a= T1 =c

T1 =c

T2 =b

T2 =c T1 a=

T2 =a T1 =b

T1 b=

T2 c=

T2 =a

=ca=

=b=c

b= =a

T1 T2

Parent-1

{a,b}
fitaddrs

=a=c

=ba=

=b c=

T1 T2

Parent-2

{a,c}
fitaddrs

crossover_mutate

T2 =b T1 =c T1 a= T1 b= T2 =aT2 c=

T2 c=T1 b=T2 =aT1 =cT1 a= T1 a=

c=a=

=b=c

b= =a

T1 T2

Child-1

c==c

=aa=

a=

b=

T1 T2

Child-2

19 www.inf.ed.ac.uk


